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Abstract. Recent analyses of multifragmentation in terms of Fisher’s model and the related construction of a phase diagram
brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis
shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the
vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas
thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown
to scale according to Fisher’s formula and can be simultaneously fit with the much higher energy ISiS multifragmentation
data.

After many decades of theoretical studies and of experimental pre-discoveries, recent papers have published what
can be considered a quantitative, credible liquid-vapor phase diagram containing the coexistence line up to the critical
temperature [1]. Somewhat unexpectedly, this diagram has not been obtained through the study of caloric curves
[2, 3] or anomalous heat capacities [4, 5]. Rather, it was generated from the fitting of the charge distributions in
multifragmentation by means of a Coulomb corrected Fisher’s formula [1, 6] giving the cluster composition of a
vapor:

nA(T) = q0A−τ exp

[
∆µA

T
−

c0εAσ

T
−

ECoul

T

]
, (1)

whereq0 is a normalization constant [6],τ is the critical exponent giving rise to a power law at criticality,A is the
cluster number,∆µ is the difference of chemical potentials between the liquid and the vapor,c0 is the surface energy
coefficient,T is the temperature,ε is the distance from the critical temperatureTc and isε = (Tc−T)/Tc, σ is another
critical exponent (expected to be approximately 2/3, if one interprets the second term in the exponent as the surface
energy of a cluster of massA divided by the temperature) andECoul is the Coulomb energy.

For∆µ = 0 the liquid and the vapor are in equilibrium and Eq. (1) can be taken to be the equivalent of the coexistence
line. More conventionally, one can immediately obtain from Eq. (1) the usualp,T andρ,T phase diagrams by recalling
that in Fisher’s model, the clusterization is assumed to exhaust all the non-idealities of the gas. It then becomes an
ideal gas of clusters. Consequently, the total pressure is
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the scaled pressurep/pc is
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and the density is
ρ = ∑

A

AnA(T). (4)

Tests on the 3-dimensional Ising model [7] demonstrate a beautiful agreement between the Ising cluster distributions
and Eq. (1), and analysis of many multifragmentation reactions [1, 8] show equally good agreement, leading to the
claim of characterization of the nuclear liquid-vapor phase diagram.
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FIGURE 1. Schematic figure of a compound nucleus in equilibrium with its saturated vapor.

The only troubling point in this otherwise elegant picture is summarized by the question: where is the vapor? Does
the nuclear system truly present itself at some time like a mixed phase system with the vapor being somehow restrained,
either statically or dynamically in contact with the liquid phase, whatever that might be? And, what is the meaning of
vapor pressure, when clearly the system is freely decaying in vacuum against no pressure?

The purpose of this paper is to show:
• why an equilibrium description, such as Fisher’s, is relevant to the free vacuum decay of a multifragmenting

system;
• how we can talk about coexistence without the vapor being present;
• and why a simple thermometric equation such asE = aT2 works better than empirical thermometers such as

isotope thermometers.
We begin with a time-honored assumption which we do not try to justify other than through the clarification it

brings to the experimental picture. We assume that, after prompt emission in the initial phase of the collision has been
isolated or accounted for, the resulting system relaxes in shape and density and thermalizeson a time scale faster than
its thermal decay. This will undoubtedly bring to mind the compound nucleus assumption, and not without reason.

At this point the system emits particles in vacuum, according to standard statistical decay rate theories. Experimen-
tally, the initial excitation energy is typically evaluated calorimetrically after accounting for pre-equilibrium emission,
and the initial temperature can be estimated by the thermometric equation of a Fermi gas

E = aT2 (5)

allowing perhaps for a weak dependence ofa onT, and remembering that the system is most likely still in the strongly
degenerate regime.

But again, what is the relevance of this to liquid-vapor phase transition, and where is the vapor?
Let us for a moment imagine the nucleus surrounded with its saturated vapor (shown schematically in Fig 1. At

equilibrium, any particle evaporated by the nucleus will be restored by the vapor bombarding the nucleus. In other
words, the outward evaporation flux from the nucleus to the vapor is exactly matched by the inward condensation flux.
This is true for any kind of evaporated particle. Thus, the vapor acts like a mirror, reflecting back into the nucleus the



particles which it is trying to evaporate. One can obviously probe the vapor by putting a detector in contact with it. But
since the outward and inward fluxes are identically the same, one might as well put the detector in contact with the
nucleus itself. At equilibrium, the two measured fluxes must be the same. Therefore, we do not need the vapor to be
present in order to characterize it completely. We can just as well study the evaporation of the nucleus in equilibrium
and dispense with our imaginary surrounding saturated vapor.

Quantitatively, we can simply relate the concentrationCA(T) of any speciesA in the vapor to the corresponding
decay ratePA(T) (controlled by a decay widthΓA) from the nucleus by matching the fluxes

PA(T) =
ΓA(T)

h̄
= CA(T)

〈
vA(T)σinv(vA)

〉
(6)

wherevA(T) is the velocity of the speciesA (of order (T/A)1/2) crossing the nuclear interface represented by the
inverse cross sectionσinv.

Thus, the vapor phase in equilibrium can be completely characterized in terms of the decay rate. The vapor need not
be there at all. This is not a nuclear peculiarity. It is just the same for a glass of water exposed to dry air or vacuum. One
speaks in these situations of a “virtual vapor”, realizing that first order phase transitions depend exclusively upon the
intrinsic properties of the two phases, and not on their interaction. But, of course, if the vapor is not there to restore the
emitting system with its back flux, evaporation will proceed, leading to a cooling off of the system. Instantaneously,
the physical picture described above is still valid, but not globally. The result of a global evaporation in vacuum
is unfortunate in terms of the analysis, as it integrates over a continuum of temperatures. It is unfortunate for the
complications it lends to the possible thermometers (kinetic energy, isotope ratios, etc.), as well as to the abundances
of the various species. In this aspect lies the real difference between our approach and any true equilibrium approach.

But, there is a simple, astute way to avoid this complication. Let us choose to consider only particles that are emitted
very rarely so that, if they are not emitted at the beginning of the decay, they are effectively not emitted at all. In other
words, let us consider only particles that by virtue of their large surface energy, have a high emission barrier.

As an example, consider a decaying system with only three available exit channels. We call them channelsa,b, and
n with barriersBa, Bb, andBn. ForBn � Ba andBb we know that the probability of emission of particles of typeb at
a fixed temperature is approximately

pb ≈ e−(Bb−Bn)/T . (7)

Since the nucleus cools as particles are emitted, the total emission probability of particles of typeb from a nucleus at
initial temperatureT0 goes like
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A similar expression exists forPa. The ratio ofPb/Pa is

Pb

Pa
=

∆2
b

∆2
a

∫ T0/∆b
0

e−1/xxdx∫ T0/∆a
0

e−1/xxdx
(9)

where∆b = Bb−Bn and∆a = Ba−Bn. The ratioPb/Pa can also be used to extract an effective temperatureTeff
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An example of how the effective temperature compares with the initial temperatureT0 is given in Fig. 2 for different
values ofBb andBa. The case whereBa andBb are large (crosses) gives effective temperatures very near to the initial
temperatureT0 (open circles). When eitherBa or Bb is near the barrier of the most probable channel (solid circles), the
effective temperature is very different from the initial temperature.

Our goal then should be to choose exit channels with large barriers in order to justify our use of the initial Fermi
temperatures. This is what has been done in the analyses leading to the nuclear phase diagrams [1, 8], where the
fragments with chargeZ < 5 were excluded. Under these conditions, the validity of Eq. (6) is guaranteed. The rate
can be related to the vapor concentration and the phase diagram can be constructed. The temperature necessary for
our purpose is fortunately the initial temperature and not the average temperature determined for multiply emitted
particles. The correctness of a thermometric relationE = aT2 can be tested “a posteriori” by verifying the linearity of
the Fisher’s plots [1, 8] and their predecessors [9]. This linearity, extending over many orders of magnitude for a variety



FIGURE 2. The effective temperature of a Fermi system with three exit channels (a, b, andn) is plotted as function of initial
excitation energy for two cases: one where barriersBa andBb are large (crosses) compared toBn=6 MeV, and another whereBa or
Bb is similar (solid circles) toBn. The initial temperature as a function of initial excitation energy is shown by the open circles.

of fragments, is in our view the strongest test yet of a Fermi gas thermometric relationship. In fact one can turn the
problem around and determine the thermometric relationship up to rather high excitation energies by the requirement
that it leads to a linear Fisher’s plot.

We offer three additional proofs for our physical picture of a hot remnant evaporating particles.
First, the abundances of the observed fragments as a function temperature allow us to construct an Arrhenius plot

(logP versus 1/T) which is equivalent to a Fisher’s plot [1, 8, 9]. The slope is the effective “barrier”B for the emission
of the particle. This can be seen immediately by considering that the yields〈n〉 reflect the thermal scaling of the decay
width

〈n〉 ∝ Γ ∝ e−B/T . (11)

But the very same barrier and the very same Boltzmann factor intervene in determining the mean time separationt
between two fragments since

t =
h̄
Γ

∝ eB/T . (12)

Such a timet is the reciprocal ofΓ. Therefore, the same Arrhenius plot with the same barrier ought to explain both
the temperature dependence of the abundances and of the times. This is exactly the case as shown in Fig. 3. The
ISiS collaboration has measured the yields (open symbols) [1] and the mean emission times (solid symbols) [10, 11]
of intermediate mass fragments as a function of excitation energy. These energies can be translated into a Fermi
temperature [1] as discussed above. A Boltzmann fit to the yields is shown by the solid line. That same line has been
superimposed (shifted) onto the emission time data and describes the data very well. In other words, the two different
observables and their energy dependence are described by the same barrier.

Second, since all that has been said above holds exactly for low excitation energies, compound nuclear decay
suddenly becomes relevant to the liquid-vapor phase transition. We should be able to scale known low energy
compound nucleus particle yields [12] according to the Fisher’s scaling.

This works out rather well as can be seen in Fig. 4 for the reaction of64Ni+12C [12]. These data were taken at the
88-inch cyclotron using Ni beams with energies between 6 and 13 MeV/nucleon. Given that the excitation energies
are extremely small and that the fragment emission barriers are large compared to those of neutron evaporation, there
is here little doubt about a thermometric relation of the kindE = aT2. The data have been scaled using the very
same Fisher parameters as extracted from the ISiS data [1], except for the critical excitation energyEC, the Coulomb
correction parameter [1, 8], and the value of∆µ which were allowed to vary freely. The values of the Fisher parameters
are listed in Fig. 4.



FIGURE 3. The mean emission times (in fm/c) of fragments with atomic number 4≤ Z ≤ 9 are plotted (solid symbols) versus
inverse temperature for the reactionπ+Au at 8 GeV/c [10, 11]. The average yields of the same fragments are plotted versus 1/T
(solid symbols). The line represents a Boltzmann fit to the fragment yields. This same line has been superimposed (shifted) on to
the emission times.

FIGURE 4. Results for the Fisher-scaled yield distribution versus the scaled temperature for the Ni+C low energy compound
nucleus decay data.



FIGURE 5. The Fisher scaled yields are plotted versus the scaled temperature for the indicated reactions.

The data scale over many orders of magnitude. With the compound nucleus data, we are far from the critical
temperature, yet the resulting extraction ofEC gives only a modest uncertainty (±0.3 MeV). If the other Fisher
parameters are also allowed to vary freely (not constrained to ISiS values), the uncertainty ofEC becomes large,
±2 MeV. Still, it is remarkable that we observe a consistent scaling in the compound nucleus data using the scaling
parameters from the high excitation energy experiments. From this example we see in these low energy reactions a
very interesting source for further characterization of the phase transition, in particular for anchoring the parameters
of Fisher’s model to the well establishedT=0 parameters of the liquid drop model.

For our third and final demonstration, we show the results of a consistent fit of the ISiS data [1] and of the low energy
compound nucleus data [12] with the Fisher model modified for Coulomb (Eq. (1)). The resulting Fisher scaling is
shown in Fig. 5 for both systems. A smooth, continuous behavior is observed from the compound nucleus data up
to the higher energy systems. This smooth behavior using a consistent set of Fisher parameters indicates a natural
extension of the compound nuclear decay mechanism up to higher energies.

In conclusion, the ISiS data as well as low energy compound nucleus data contain the signature of a liquid to vapor
phase transition via their strict adherence to Fisher’s model. Through a direct examination of the mean emission times
of the ISiS fragmentation reactions, we infer a stochastic, thermal emission scenario consistent with complex fragment
emission at much lower excitation energies.
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